

# Lead-free KNN-based piezoceramics for ultrasonic imaging





S. Garroni<sup>1,2\*</sup>, N. Senes<sup>3</sup>, A. Iacomini<sup>3</sup>, L. Nuvoli<sup>3</sup>, S. Enzo<sup>3</sup>, G. Mulas<sup>3</sup>, S. Cuesta-Lopez<sup>1,2</sup>

<sup>1</sup>International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Plaza

Misael Banuelos s/n, 09001 Burgos, Spain <sup>2</sup>Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology. Consolidated Research Unit UIC-154. Castilla y Leon. Spain. University of Burgos. Hospital del Rey s/n, 09001

Burgos, Spain





<sup>3</sup>Department of Chemistry and Pharmacy, University of Sassari and INSTM, Via Vienna 2, I-07100 Sassari, Italy



PiezoelecTrics

Ultrasound imaging system (Fig.1) is a non-invasive medical imaging technique that has become one of the most widely used **diagnostic tools** in modern medicine for detecting prenatal anomalies and deep screening of biological tissues.



Among the lead-free candidates, K<sub>x</sub>Na<sub>1-x</sub>NbO<sub>3</sub> (KNN) has become one of the most investigated lead-free piezoelectric system

### **KNN** Properties

T<sub>c</sub> 217-304 °C



However, the presence of a lead-based material can be considered a critical issue for device working in contact with **biological tissues**<sup>2</sup>.



Nanopiezoeletrics focuses on developing new piezoceramics with interconnected porosity in mesoporous range, characterized by promising properties specifically modulated for **biomedical** 

<sup>1</sup>J. Holterman, P. Groen, an introduction to Piezoelectric Materials and Applications, edited by Stichting Applied Piezo, 1st edn (Apeldoorn, 2013)

<sup>2</sup>Directive 2012/19/EU of the European Parliament of the European Parliament and of the Council of of 4 July 2012 on waste electrical and electronic equipment (WEEE), http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32012L0019&from=EN.

## **Preliminary Results**





Starting reagents: Nb<sub>2</sub>O<sub>5</sub>. Na<sub>2</sub>CO<sub>3</sub>, K<sub>2</sub>CO<sub>3</sub>

Fig. 6. Schematic representation of the mainly steps used in the production of KNN pellet by solid-state route.

In this specific study the influence of the mechanical processing (MP) and the addition of MgNb<sub>2</sub>O<sub>6</sub> on the KNN microstructure was evaluated.







#### 5 **Conclusions and Future plans**

- Prolonged milling of the starting reagents allow to obtain pure KNN phase
- Mechanical processing decreases the calcination temperatures of the KNN samples
- MgNb<sub>2</sub>O<sub>6</sub> addition helps to modify the cubic shape particles of KNN
- A better densification is achieved in the doped system
- Piezo-properties characterization of the as-prepared materials by PFM apparatus
- Correlation between structural and piezo properties
- Combination of the dense and porous KNN

Sol-Gel Route

### Acknowledgments





"Nano-Piezoelectrics" Novel Nanoporous PZT Materials for Efficient Ultrasonic Biomedical Sensors. MARIE SKLODOWSKA-CURIE ACTIONS Individual Fellowship (IF) Horizon 2020 research and innovation programme. Grant Agreement Number: 707954. Beneficiary: Dr. Sebastiano Garroni. Supervisor: Dr. Santiago Cuesta-Lopez. Contacts sgarroni@ubu.es; scuesta@ubu.es; http://www3.ubu.es/iccram/nano-piezoelectrics

uniss

Powders Mixture

Solid-State

Route