

Synthesis of graphene-based nanomaterials: their applications in electrochemical detection of organic molecules

Stela Pruneanu INCDTIM Cluj-Napoca

TOPICS

1. Graphene synthesis

- TEM/HRTEM characterization
- > XRD and UV-Vis characterization
- **2. Electrochemical detection of catechol**
- 3. Photo-degradation of pollutants with graphene-TiO2 based materials
- 4. Conclusions

1. Graphene synthesis

□ Single layer of sp² hybridized carbon atoms

 \Box High mobility of charge carriers: 200.000 cm²V⁻¹s⁻¹

□ Surface area of a single graphene sheet is 2630 m²/g

Graphene is resistant to attack by powerful acids and alkalis (hydrofluoric acid, ammonia)

A) Chemical Vapor Deposition (CVD)-bottom up

□ Au(x)/MgO- catalyst, where x = 1, 2 or 3 wt%□ Ag(x)/MgO-catalyst, where x = 1,2 or 3 wt%□ Pt(x)/MgO-catalyst, where x = 1,2 or 3 wt%

□ AuAg(x)/ MgO-catalyst, where x = 1:1 or 1.5:1.5 wt% □ AuPd (x)/ MgO-catalyst, where x = 1:1 or 1.5:1.5 wt% □ AuCu (x)/ MgO-catalyst, where x = 1:1 or 1.5:1.5 wt% □ AuPt (x)/ MgO-catalyst, where x = 1:1 or 1.5:1.5 wt%

Methane; (carbon source) 1000 °C- synthesis temperature (60 minutes)

Purification in HCl (30 minutes) Drying - 120 °C (overnight) TEM/HRTEM images (3 wt.% metal)

Graphene-gold nanoparticles (5-35 nm; 22 nm)

Graphene-silver nanoparticles (5-200 nm; 35 nm)

Graphene-platinum nanoparticles (2-10 nm; 8 nm)

XRD study

Gr-Au-3 τ (graphene): 2.2 nm (6 graphitic layers)

Gr-Au-2 τ (graphene): 1.6 nm (4 graphitic layers)

S Pruneanu et al, International Journal of Nanomedicine 2013(8) 1429–1438

Scherrer equation: $\tau = K\lambda/\beta \cos\theta$

 τ = the mean size of the crystalline domains

where K is the shape factor, λ is the x-ray wavelength, β is the line broadening at half the maximum intensity (FWHM) in radians, and θ is the Bragg angle

B) Chemical synthesis (top-down)

C. Socaci et al., Sensors and Actuators B 213 (2015) 474-483

$$\mathsf{A}(\lambda) = \varepsilon_m(\lambda) \cdot d \cdot C$$

 $\varepsilon_{228 \text{ nm}} = 0.88 \text{ mL} \cdot \text{mg}^{-1} \cdot \text{cm}^{-1}$ $\varepsilon_{700 \text{ nm}} = 0.04 \text{ mL} \cdot \text{mg}^{-1} \cdot \text{cm}^{-1}$

Graphene-metallic nanoparticles starting from graphite

Graphene/AuNPs (10 – 40 nm)

Graphene/PtNPs (5 – 10 nm)

Graphene/Au-PdNPs (5 – 20 nm)

C. Electrochemical graphene/graphene-porphyrin synthesis (top-down)

- Electrochemical exfoliation of graphite- in acidic solution

Electrolyte: mixture of strong acids (sulfuric : nitric)low voltage (2-3 V)

- few hours

-wash, filtrate and dry

TEM images of graphene

<u>XRD study</u>

immediately after preparation: mixture of few-layer and multi-layer graphene

after few days: mixture of graphene oxide, few-layer and multi-layer graphene

d-spacing: GO = 0.75 nm (insulating; good biocompatibility with living systems)

GR = 0.36 nm (highly conductive; poor biocompatibility with living systems)

XRD pattern of the mixt material

TEM image of the mixt material

- Electrochemical exfoliation of graphite - in neutral solution

XRD pattern of EGr-TPyP composite

UV-Vis characterization

Porphyrins display extreme intense bands, the so-called Soret or B-bands in the 380–500 nm range with molar extinction coefficients of 10⁵ M⁻¹ cm⁻¹

> In the **500–750 nm range**, their spectra contain a set of weaker, but still considerably intense **Q bands** with molar extinction coefficients of $10^4 \text{ M}^{-1} \text{ cm}^{-1}$

UV-Vis spectrum of EGr-TPyP composite

2. Electrochemical detection of catechol

EGr-TPyP/GC

Screen-printed electrode

Increases the active surface area (50 - 100 %)

□ Improves the transfer of electrons

Phenols

 catechol undergoes reversible oxidation to quinone by a transfer of two electrons and two protons

Phenolic compounds are a class of chemical compounds consisting of a hydroxyl functional group (–OH) attached to an aromatic ring

> Phenols can have two or more hydroxyl groups bonded to the aromatic ring(s) in the same molecule

Phenol, catechol, and hydroquinone, are urinary end-products of the metabolism of benzene, nutrients, drugs, and endogenous substances.

> Phenol, catechol, and hydroquinone may have a role in the carcinogenicity of benzene and in mechanisms that lead to leukemia.

> CAT and HQ are widely used in industrial applications such as cosmetics, pesticides, flavoring agents, antioxidant, dyes and pharmaceutics

> They are highly toxic to both the environment and humans, even at very low concentrations.

> The high toxicity and low degradability has made CAT and HQ important contaminants, which are considered as environmental pollutants by the US Environmental Protection Agency (EPA) and the European Union (EU)

> Therefore, it is very important to develop simple and rapid analytical methods for the determination of CT and HQ.

> In this respect there is the need of rapid, low-cost, and possibly direct methods to quantify these phenolic metabolites.

According to Romanian regulations, CAT concentrations < 4.5×10^{-7} M are normal Alert values: > 10^{-5} M

Optimization of experimental conditions

graphene dispersion in DMF 1 mg/mL

SWVs recorded with GC electrodes modified with various volumes of EGr-TPyP solution in pH 6 PBS solution containing 10^{-4} M catechol; scan rate 10 mVs⁻¹.

 $I_{cap} = C x \, dV/dt - 3 x \, 10^{-5} - 6 x \, 10^{-5} \, A$

CVs recorded with EGr-TPyP/GC electrode in pH varying solutions (from 3.6 to 8); Optimum pH was selected to be pH 6

Glassy carbon vs EGr-TPyP/Glassy carbon

<u>quasi-reversible redox process</u> ΔE_{peak} = 380 mV (>> 60 mV) I_{pa} >>I_{pc}

 $\frac{reversible\ redox\ process}{\Delta E_{peak} = 60\ mV}$ Ipa = Ipc

Active area (GC) = 0.028 cm²

Active area (EGr-TPyP/GC) = 0.081 cm²

GC electrode

SWV recorded in the presence of CAT

SWV recorded in the presence of CAT

c.

EGr-TPyP/GC

 $LOD = 1.42 \times 10^{-5} M$ 2.5x10⁻⁵ 4.0x10 Ipeak (A) 3.0x10 2.0x10⁻⁵ 2.0x10 1.0x10 GC electr 1.5x10^{-⁵} **GC** electrode € 0.0 2.0x10⁵ 4.0x10⁵ 6.0x10⁵ 8.0x10⁵ 1.0x1 _______ 1.0x10⁻⁵ CCAT (M) Linear range: 10⁻⁵ - 10⁻⁴ M 5.0x10⁻⁶ $= -5.22 \times 10^{-7} + 0.242 \times C_{CAT}$ Sensitivity: 6 mA/M 0.0 $LOD = 2.09 \times 10^{-6} M$ $LOD = 1.42 \times 10^{-5} M$ -5.0x10⁻⁶ -3.0x10⁻⁵ 3.0x10⁻⁵ 6.0x10⁻⁵ 9.0x10⁻⁵ 1.2x10⁻⁴ 0.0

3.0x10⁻⁵

6.0x10

5.0x10

y = - 3.71 x 10⁻⁸ + 0.006 x C_{CAT}

EGR-TPyP/GC electrode

Linear range: 10⁻⁶ - 10⁻⁴ M Sensitivity: 242 mA/M $LOD = 2.09 \times 10^{-6} M$

NANOGENTOOLS Autumn School October 2017

C_{CAT} (M)

EGR-TPyP/GC electrode

SWV recorded in the presence of HQ and CAT

SWV recorded in the presence of REZ and CAT

 \blacktriangleright The reactivity of the aromatic ring activated with an OH group > when the OH group is in the *ortho or para positions* (the highest electron density is located on both *ortho and para* positions).

 \blacktriangleright Hydroquinone and catechol have the aromatic ring activated, while the resorcinol ring is not activated.

Interfering species

Hydroquinone: $5 \times 10^{-5} M$ Linear range: $10^{-6} - 10^{-4} M$ Sensitivity: 110 mA/MLOD = $9.4 \times 10^{-6} M$

Resorcinol: 5 x 10⁻⁵ M Linear range: 10⁻⁶ - 10⁻⁴ M Sensitivity: 290 mA/M LOD = 1.22 x 10⁻⁶ M

No Interfering species

Linear range: 10⁻⁶ - 10⁻⁴ M Sensitivity: 242 mA/M LOD = 2.09 x 10⁻⁶ M

Analysis of CAT in a relevant environment

two drinking water sources:

tap water (the pH was adjusted to pH 6)

> commercial mineral water (pH 5.9) containing known quantities (mg/L) of interfering species:

23.59 Na⁺; 4.75 K⁺; 60.14 Mg²⁺; 191.2 Ca²⁺; 11.12 Cl⁻; 13.57 SO₄⁻²⁻.

<u>No interfering species</u> Linear range: 10⁻⁶ - 10⁻⁴ M Sensitivity: 242 mA/M LOD = 2.09 x 10⁻⁶ M

<u>In mineral water:</u> Linear range: 6 x 10⁻⁶ - 10⁻⁴ M Sensitivity: 115 mA/M LOD = 1.82 x 10⁻⁶ M

<u>In tap water:</u> Linear range: 6 x 10⁻⁶ - 10⁻⁴ M Sensitivity: 90 mA/M LOD = 4.19 x 10⁻⁶ M

EGr-TPyP/GC	Added (M)	Found (M)	Recovery %	RSD (%)
	10-5	0.95 x 10 ⁻⁵	95	7.21
Mineral	3 x 10 ⁻⁵	3.3 x 10 ⁻⁵	110	7.22
water	10-4	1.04 x 10 ⁻⁴	104	3.15
Tap water	10-5	0.97 x 10 ⁻⁵	97	4.49
	3 x 10 ⁻⁵	2.96 x 10 ⁻⁵	98	5.07
	10-4	1.03 x 10 ⁻⁴	103	6.48

Table 2. Determination of catechol in mineral and tap water

Sensor device is under construction...

For detection of:

- heavy metal ions (Pb2+)
- > phenols (catechol, hydroqinone)
- neurotransmitters (dopamine)

3. Photodegradation of pollutants with graphene-TiO2 based materials

Graphene-TiO₂/Ag composites

TiO ₂	3.26 eV – wide band-gap semiconductor
TA- TiO ₂ /Ag	3.09 eV
TA- GO	3.06 eV
TA- GR	3.04 eV
TA - GT	3.05 eV

UV-Vis spectra of graphene-TiO2 based materials Shift of the absorption edge towards visible range

100nm

TEM/EDS mapping of TiO₂/Ag

TEM images of graphene-TiO₂/Ag

<u>Amaranth</u>

Is a purple azo dye used to color: food, cosmetics, paper, wood, leather

- Coloring agent for jam, jellies (E123- food additive)
- In USA it is legally prohibited (since 1976)
- > In Romania is legally used (since 2002)
- Prolonged intake can result in tumors and allergy

UV-Vis investigation

4 mg of photo-catalysts (TA, TA-GO, TA-GR and TA-GT) - in 20 ml of amaranth solution (2 x 10⁻⁵ M)

Reaction kinetics

First order reaction- the rate *depends linearly* on the concentration of only one reactant (a unimolecular reaction)

first order rate constant

	UV	Sun	Day
Samples	<i>k</i> (min ⁻¹)	<i>k</i> (min ⁻¹)	<i>k</i> (min ⁻¹)
AM	0.0010	0.0052	0.0006
ТА	0.0168	0.0347	0.0050
TA-GO	0.0191	0.0552	0.0063
TA-GR	0.0204	0.0583	0.0122
TA-GT	0.0173	0.0505	0.0070

HPLC analysis

	Sun light			
	30 min	2 h	4 h	
ТА	77%	12.8%	0.04%	
TA-GO	69	7.3	0	
TA-GR	55	2	0	
TA-GT	59.2	3.2	0	

Conclusions

Novel method for graphene/graphene-porphyrin synthesis – electrochemical exfoliation of graphite

Substrates modified with graphene-TPyP- highly sensitive to the electrochemical detection of catechol – but NOT selective

Additional work - to eliminate the influence of interfering species

Graphene-TiO₂ nanoparticles composite – excellent material for pollutants degradation

Funding Projects

Partnership-230/2014 TE- 5/2015 PED 101/2017 PED 102/2017 PED 103/2017 CETATEA - 623/11.03.2014- for TEM/HRTEM investigation

Working TEAM

Dr. Florina Pogacean Dr. Maria Coros Dr. Lidia Magerusan Dr. Marcela Rosu Dr. Crina Socaci Dr. Alexandru Biris PhD student Alex Turza PhD student Alin Porav Dr. Eng. Stefan Gergely Eng. Mirel Valentin

Thank-you