Advanced Training in understanding the Safety of Nanomaterials

Measuring engineered nanomaterial toxicity in biological systems

Prof. Francesco Dondero Department of Science and Technological Innovation (DISIT) Università degli Studi del Piemonte Orientale "Amedeo Avogadro" Alessandria, Italy francesco.dondero@uniupo.it

Burgos 2nd October 2017

Nanotechnology: science of manipulating matter at the molecular scale and holds the promise of providing significant improvements in technologies, including industrial manufacturing, human health, medicine, personal care, and even environmental protection

ENGINEERS NANOPARTICLES

Iron Oxide as an example of naturally occurring NM

NATURAL NANOPARTICLES

2 Schematic representation of the most abundant iron oxide and oxy-Fig. hydrosides: (a) hematite, (b) magnetite, (c) goethite, (d) maghemite, and (e) lepidœrocite. Ferrihydrite is not shown as the structure is still under debate in the literaty re. All structures are viewed from the (001) or (0001) directions.

Fig. 2 Iron oxide nanoparticles in iceberg-hosted sediments: (a) irregular shaped aggregate of ferrihydrite, (b) acicular twinned goethite, (c) schwertmannite pincushion spheroidal aggregates, and (d) hematite nanoparticles of irregular rounded shapes. (a-c) are from ref. 12, Copyright (2011), (d) is from ref. 13, Copyright (2011); both with permissions from Elsevier.

> ociety of Chem © The Roya Nanogentools confidential

ENGINEERS NANOPARTICLES

- >6000 commercially available products
- >800 companies
- 47 countries
- 1 million tons / year (0.75 is ultrafine TiO₂)
- 1.5 Trillions \$ by 2015 ??? (NSF, 2001)

ools confidential

Funding of nanotechnologies by country (source: Cientifica Ltd 2011)

ENM facts

Funding of nanotechnologies by region (source: Cientifica Ltd 2011)

Silver O Titanium dioxide O Silicon dioxide O Tungsten disulfide O Graphite O others

Wano'silver

- Silver is an extremely reactive metal
- in rapid diffusion at European and world level
- 3 tons/y in Switzerland (one-third in the textile industry)
- Several fields of application:
 - Anti-microbial activity (food preservative, water purification, additive)
 - Paints & coating
 - Electronics
 - Industrial catalysis ?? (5000 tons/y bulk Ag)

IIIIIIAMANDAUTURESATENAANORKIIIIIIIIIIIIIIIIIIIIIIIIIIII

- Investigation of silver nanoparticles (AgENPs) effects in the marine environment
- Use of the marine filter feeding organism *Mytilus galloprovincialis* Lam as bioindicator
- Questions addressed:
 - 1. What is the contribution of the intrinsic **nano-form** to Ag toxicity
 - 2. When silver NPs are toxic to mussels (Point Of Departure)?
 - 3. Can AgENP toxicity be predicted for **high order levels** of biological organization (population)?
 - 4. What is the **mode of action** of AgENP and what are the differences with the ionic form?

1111111

Marine mussels as env monitors

Marine mussels as env monitors

There are four main ecotypes: M. edulis M. galloprovincialis M. trossulus M. californianus

Genetic introgression of one species into another is usual

A growing body of information on mussel physiology, genetics and genomic information is available.

IIIIIIAMANDAUTUNESATENKORKIIIIIIIIIIIIIIIIIIIIIIIII

- Investigation of silver nanoparticles (AgENPs) effects in the marine environment
- Use of the marine filter feeding organism *Mytilus galloprovincialis* Lam as bioindicator
- Questions addressed:
 - 1. What is the contribution of the intrinsic **nano-form** to Ag toxicity
 - 2. When silver NPs are toxic to mussels (Point Of Departure)?
 - 3. Can AgENP toxicity be predicted for **high order levels** of biological organization (population)?
 - 4. What is the **mode of action** of AgENP and what are the differences with the ionic form?

Biological complexity and informational levels

Three levels of study:

Organismic level

toxicological descriptors and Point of Departure (POD)

Mechanistic level

Mode Of Action (MOA) by means of a systematic assessment (transcriptomics)

Ecophysiological level

Predictionn of high order level effects from long-term change assessment in the energy parameter responses

NANOPARTICLES TESTED

Organismic level

Ecotoxicological caracterization of ENPs (acute, subchronic and chronic tests).

Identification of full range of toxicity endpoints

Mechanistic level

Molecular, Biochemical and cytochemical approach.

Evaluation of oxidative stress by starting from Reactive Oxygen Species (ROS) based Mode Of Action (MOA)

Ecophysiological level

Evaluation of long-term changes in the energy parameters/physiological responses of bivalve.

Application of the Dynamic Energy Budget Nanogen (DEB) model al

EXPERIMENTAL DESIGN

Animals

Mytilus galloprovincialis in aerated 35‰ artificial seawater (3.5 L/min) a 18°C, pH 8 \pm 0.5, 1 L per animal. Acclimatized for 30 days (daily food addiction)

Exposure

Set

Water s

(ICP-MS, LOD 0.5 ug/L

Semi-static conditions, silver added daily along with water renewal from freshly prepared stock water-suspension. <u>Four days of exposure.</u> 10 animals per biological replicate (5)

Nanoparticles, primary characterization and doses AgENPs 5nm and 50nm, AgNO₃ <u>5 nominal exposure levels with a log10 series:</u> <u>10 mg/L - 0.001 mg/L</u> Primary characterization of AgENPs (TEM, DLS)

wn at regular intervals (0-1-4-24 h) and analysed for dissolved (in

Narlogentocls confidenties Conter

Organismic level Nano silver fate in seawater NANOGENTOOLS Ultrapure water

λESEM-EDX analysis on whole fixed gills. High dose (1 mg/L)

A kinetic model for silver availability

•Set up kinetic models for silver bioavailability in the water column based on the logistic curve (starting from ICP-MS data of total

silver for each Ag form)

7 6 Model SS 8 differenza SS Model SS 9 0.4840 0.234256 0.75 0 10 -0.0640 0.004096 0.65 0.200704 11 0.1230 0.015129 0.65 0.068121 12 -0.1160 0.013456 0.65 0.09 13 0.0840 0.007056 0.65 0.1936 14 -0.0560 0.003136 0.65 0.1936 15 0.1540 0.023716 0.65 0.0529 16 -0.1220 0.014884 0.35 0.042436 17 -0.0240 0.000576 0.35 0.01464 18 -0.1160 0.013456 0.35 0.04	Model 0.75 0.300923 0.300923 0.300923 0.300923 0.300923 0.300923 0.300923 0.180347	SS 0 0.009785817 0.007757507 0.022777839 0.002408524 0.008267045 0.014179263 0.001321096	
8 differenza SS Model SS 9 0.4840 0.234256 0.75 0 10 -0.0640 0.004096 0.65 0.200704 11 0.1230 0.015129 0.65 0.068121 12 -0.1160 0.013456 0.65 0.0237 13 0.0840 0.007056 0.65 0.1936 14 -0.0560 0.003136 0.65 0.0529 15 0.1540 0.023716 0.65 0.042436 16 -0.1220 0.014884 0.35 0.042436 17 -0.0240 0.000576 0.35 0.01464 18 -0.1160 0.013456 0.35 0.04	Model 0.75 0.300923 0.300923 0.300923 0.300923 0.300923 0.300923 0.300923 0.180347	SS 0 0.009785817 0.007757507 0.022777839 0.002408524 0.008267045 0.014179263 0.001321096	
9 0.4840 0.234256 0.75 0 10 -0.0640 0.004096 0.65 0.200704 11 0.1230 0.015129 0.65 0.068121 12 -0.1160 0.013456 0.65 0.025 13 0.0840 0.007056 0.65 0.09 14 -0.0560 0.003136 0.65 0.0529 15 0.1540 0.023716 0.65 0.042436 16 -0.1220 0.014884 0.35 0.01246 17 -0.0240 0.000576 0.35 0.01464 18 -0.1160 0.013456 0.35 0.04	0.75 0.300923 0.300923 0.300923 0.300923 0.300923 0.300923 0.300923 0.180347	0 0.009785817 0.007757507 0.022777839 0.002408524 0.008267045 0.014179263 0.001321096	
10 -0.0640 0.004096 0.65 0.200704 11 0.1230 0.015129 0.65 0.068121 12 -0.1160 0.013456 0.65 0.25 13 0.0840 0.007056 0.65 0.09 14 -0.0560 0.003136 0.65 0.1936 15 0.1540 0.023716 0.65 0.042436 16 -0.1220 0.014884 0.35 0.014644 17 -0.0240 0.00576 0.35 0.014644	0.300923 0.300923 0.300923 0.300923 0.300923 0.300923 0.300923 0.180347 0.180347	0.009785817 0.007757507 0.022777839 0.002408524 0.008267045 0.014179263 0.001321096	
11 0.1230 0.015129 0.65 0.068121 12 -0.1160 0.013456 0.65 0.25 13 0.0840 0.007056 0.65 0.09 14 -0.0560 0.003136 0.65 0.1936 15 0.1540 0.023716 0.65 0.042436 16 -0.1220 0.014884 0.35 0.042436 17 -0.0240 0.00576 0.35 0.014664 18 -0.1160 0.013456 0.35 0.04	0.300923 0.300923 0.300923 0.300923 0.300923 0.300923 0.180347 0.180347	0.007757507 0.022777839 0.002408524 0.008267045 0.014179263 0.001321096	
12 -0.1160 0.013456 0.65 0.25 13 0.0840 0.007056 0.65 0.09 14 -0.0560 0.003136 0.65 0.1936 15 0.1540 0.023716 0.65 0.0529 16 -0.1220 0.014884 0.35 0.042436 17 -0.0240 0.00576 0.35 0.01664 18 -0.1160 0.013456 0.35 0.04	0.300923 0.300923 0.300923 0.300923 0.300923 0.180347 0.180347	0.022777839 0.002408524 0.008267045 0.014179263 0.001321096	
13 0.0840 0.007056 0.65 0.09 14 -0.0560 0.003136 0.65 0.1936 15 0.1540 0.023716 0.65 0.0529 16 -0.1220 0.014884 0.35 0.042436 17 -0.0240 0.00576 0.35 0.011664 18 -0.1160 0.013456 0.35 0.04	0.300923 0.300923 0.300923 0.180347 0.180347	0.002408524 0.008267045 0.014179263 0.001321096	
14 -0.0560 0.003136 0.65 0.1936 15 0.1540 0.023716 0.65 0.0529 16 -0.1220 0.014884 0.35 0.042436 17 -0.0240 0.000576 0.35 0.011664 18 -0.1160 0.013456 0.35 0.04	0.300923 0.300923 0.180347 0.180347	0.008267045 0.014179263 0.001321096	
15 0.1540 0.023716 0.65 0.0529 16 -0.1220 0.014884 0.35 0.042436 17 -0.0240 0.000576 0.35 0.011664 18 -0.1160 0.013456 0.35 0.04	0.300923	0.014179263	
16 -0.1220 0.014884 0.35 0.042436 17 -0.0240 0.000576 0.35 0.011664 18 -0.1160 0.013456 0.35 0.04	0.180347	0.001321096	
17 -0.0240 0.000576 0.35 0.011664 18 -0.1160 0.013456 0.35 0.04	0.180347		
18 -0.1160 0.013456 0.35 0.04	0.100041	0.003801106	
	0.180347	0.000920934	
19 -0.0160 0.000256 0.35 0.01	0.180347	0.004851556	
20 -0.1430 0.020449 0.35 0.051529	0.180347	0.003288666	
21 -0.0060 3.6E-05 0.35 0.0081	0.180347	0.006344618	
22 -0.2060 0.042436 -1.65 2.9241	0.080429	0.00041736	
23 -0.1862 0.03467044 -1.65 2.99220804	0.080429	3.96123E-07	
24 -0.2110 0.044521 -1.65 2.907025	0.080429	0.000646654	
25 -0.1810 0.032761 -1.65 3.010225	0.080429	2.08905E-05	
26 -0.2210 0.048841 -1.65 2.873025	0.080429	0.001255241	
27 -0.1760 0.030976 -1.65 3.0276	0.080429	9.15967E-05	
28			
29			
3U			
37			
33			
34			
35			
36			
37			
38			

INTEGRATED STANDARDIZED SILVER DOSE

$y = max/(1+(x/\tau))^{b}$

y = Silver concentration (mg/L) x = time (h) τ = half life (h) of silver in the water column

b = slope of the log phase**max** = silver concentration at time zero

Determination of ACTUAL SILVER DOSE

A kinetic model for silver availability

Acute toxicity as a function of actual silver dose (96h)

Organismic level

NANOGENTOOLS

UNIVERSITÀ DEL PIEMONTE ORIENTALE

 $r^2 = 0,79$

Bioaccumulation patters

Bioaccumulation of silver in mussel body as a function of actual silver in mussel body as a function of actual silver in mussel body as a function of actual silver in the second second

Organismic level

UNIVERSITÀ DEL PIEMONTE ORIENTALE

Mortality vs internal dose

Take home message

- The main factor driving gross silver toxicity, i.e. mortality is the **actual** concentration in the water column;
- The "particle effect" is relevant in the context of chemical/ physical processes occurring in the seawater (sedimentation, aggregation, etc)

particle size/other characteristic	endpoint	NOEC	LOEC	EC1	EC5	EC10	EC20	EC50	units
AgNO ₃	96h mortality	0,02083	0,56958	0,00176	0,01565	0,04203	0,12279	0,76764	mg/L/h
amepox 3-8nm	96h mortality	0,16625	0,40667	0,00802	0,04089	0,08546	0,19022	0,74697	mg/L/h
nanotrade 50 nm	96h mortality	0,00445	0,04454	0,00035	0,00618	0,02271	0,09332	1,04492	mg/L/h
AgNO ₃	survival time probability after emersion	0,00156	0,02083	na		na	na	na	mg/L/h
amepox 3-8nm	survival time probability after emersion	0,00046	0,00596	na		na	na	na	mg/L/h
nanotrade 50 nm	survival time probability after emersion	0,00004	0,00045	na		na	na	na	mg/L/h
AgNO ₃	bissus synthesis	0,00156	0,02083	0,00039	0,00090	0,00130	0,00195	0,00388	mg/L/h
amepox 3-8nm	bissus synthesis	0,00596	0,16625	0,00007	0,00056	0,00146	0,00415	0,02464	mg/L/h
nanotrade 50 nm	bissus synthesis	0,00445	0,04454	na	na	na	na	na	mg/L/h

Regressed value

Organismic level

NANOGENTOOLS

Ecophysiological effects

NANOGENTOOLS

5 nm AgENPs and AgNO₃ were tested

TWO nominal exposure concentrations were considered **according to the Ag logistic model**:

Actual dose (silver standardized i	Nominal dose	
-≅ 1.0 μg/L/h (5 nm AgENP EC ₁₀ (LOEC) for short term chronic toxicity test)	≽ 20 μg/L
≅ 0.1 μg/L /h (5 nm AgENP EC ₁ (NOEC) for short term chronic toxicity test)	≻ 2.0 μg/L

Ecophysiological effects

NANOGENTOOLS

5 nm AgENPs and **AgNO₃** were tested

SAME ACTUAL RANGE FOR SILVER NITRATE WAS SELECTED

AgENPs impacts on physiological performance of Mytilus galloprovincialis Lam.

Animals were kept in mesocosms (microcosms) for 4 weeks.

Acclimatation: animals transported to the laboratory under temperature/humidity controlled conditions, cleaned from epibionts and allowed to acclimate for 15 days at a temperature of 22 °C (natural filtered seawater ~37 ‰ salinity; pH 8.0-8.1; constantly aerated 60 L/h). Organisms were fed daily fresh cultures of *Nannochloropsis spp.* or *Isochrysis galbana* using adjustable drip.

Experimental design: Organisms treated for <u>28 days</u> in mesocosms. Ag added daily to experimental samples. Natural filtered seawater (1 L/ animal) constantly aerated at 60 L/h was used. Organisms were fed ad libitum with fresh algal cells of *Nannochloropsis spp* or *Isochrysis galbana*. Temperature, pH and $[0_2]$ were daily monitored and maintained at constant level (25°C and pH value of 8.0 ± 0.2)

Ecophysiological effects

NANOGENTOOL S

Organismic level

Ecotoxicological caracterization of ENPs (acute, subchronic and chronic tests).

Identification of full range of toxicity endpoints

Mechanistic level

Molecular, Biochemical and cytochemical approach.

Evaluation of oxidative stress by starting from Reactive Oxygen Species (ROS) based Mode Of Action (MOA)

Ecophysiological level

Evaluation of long-term changes in the energy parameters/physiological responses of bivalve.

Application of the Dynamic Energy Budget (DEB) model al

Respiration rate (RR)

 Measurement of the respiration rate of individuals through sensor arranged for measuring the decline in dissolved oxygen within a respirometric chamber

Nanogentoois confidentiai

Ecophysiological effects

Measure of an animal's actual physiological growth potential.

Summarizes the information on various physiological rate functions and is a closer approximation of an animal actual growth rate, closely correlating with long-term growth performance

C = P + R + E + F

C = energy consumed, P = energy used for animal productivity, R = energy lost in respiratory processes, E = energy excreted in dissolved by products, F = energy lost in defecation

Take home message

 \bullet

- For nanoAg, similar prediction of chronic toxicity test (96h).
- Worse effects for ionic silver.
- Arrows indicate comparable Ag levels according to the prediction model to assert on the end of th

Dynamic Energy Budget Theory approach

Prediction of how energy is assimilated and assigned to the different needs for life – growth, development, and reproduction – under fluctuating environmental conditions, assuming ambient food and temperature are known.

Phase I first we need to get DEB parameters of target species and this phase includes both experimental and mathematical and modeling procedures as the covariation method;

Phase II the second step involves a number of experiments in lab mesocosms (hereafter called experimental phase with contaminant) to estimate how functional traits (e.g. feeding, respiration, assimilation rates etc.) change under the contaminant treatment;

Phase III once investigated at which level of the energy budget the target contaminant exerts an effect (e.g. reduction of assimilation or increase the maintenance costs; the third step involves the DEB simulation to predict the potential effect of the target contaminant on two important life history traits as body size and fecundity.

DEB parameters for the effect of Ag ENPs and AgNO₃ on the ecophysiological performance of Mytilus galloprovincialis

Treatment	AE	% CTRL	Jxm (J h ⁻¹ cm ⁻²)	% CTRL	рМ	% CTRL	
Control (CTRL)	0.93	-	8.2	-	0.84	-	
Ag ENPs 2 μg/L	0.22	-76	43.0	424	0.53	-37	
Ag ENPs 20 μg/L	0.14	-85	34.3	318	0.79	-6	
AgNO3 0.2 μg/L	0.27	-71	36.1	340	1.36	61	
AgNO3 2 μg/L	0.09	-90	36.6	346	1.12	33	
AgNO3 20 μg/L	0.06	-94	11.4	39	0.90	8	

AE absorption officience

βM

ingestion rate for an individual

pecific maintenance cos

Nanogentools confidential

Organismic level

Ecotoxicological caracterization of ENPs (acute, subchronic and chronic tests).

Identification of full range of toxicity endpoints

Ecophysiologica level

Evaluation of long-term changes in the energy parameters/physiological responses of bivalve.

Application of the Dynamic Energy Budget Nanogen (DEB) model al

Mechanistic level

Molecular, Biochemical and cytochemical approach.

Evaluation of oxidative stress by starting from Reactive Oxygen Species (ROS) based Mode Of Action (MOA)

SILVER BIOACCUMULATION DYNAMICS

High resolution arrays for Mytilus spp

15 K probes – Agilent sure array technology

Two –color array for nanoAg and ionic Ag effects in gills

- T7 cRNA amplification and labelling
- Common reference (no treatment) design
- LOESS normalization
- Linear model for microarray analysis (LIMMA)

Shared genes/features

53

cell-celljunction cell junction microtubule **TRNA** aminoacylation tor cellular protein **DOBINA** translation amino metabolism acid metabolism cell-substrate adhesion cell-substrate adhesion amino acid activation organic cellular proteolysis acid metabolism cellular protein complex assembly assembly Nanogentools confidential

Only in Ag+ Cellular Components

54

Nanogentools confidential

Only in Ag+ CC

cytoplasmic part	ribosome	non-membrane-bounded organelle		mitochondriai envelope			macmacromolecular ular		
ribonucleoprotein complex	mitochondrial	Intracellular	cell part		mitochondrion				
	envelope Intracellular part	protein complex	organelle envelope lumen		mitochondrial Intermembrane space		orgranetelle		
cytoplasm		organelle membrane	microtubul	•	DNA packaging complex		cceil	envelope	
	intracellular organelle	organelle part							
55					Ne	anoger	tools confidential	****	

Only in nanoAg (components)

Only in nanoAg (process)

DG NANO

DG ionic silver

Nanogentools confidential

MANUGENTOULS

- 1. To what level are silver NPs toxic to mussels?
- 2. What is the contribution, if any, of the nano scaled form to toxicity?
- 3. What is the mode of action of AgENP and what differences with the ionic form?
- 4. How can AgENP toxicity be projected to population level?

1. To what level are silver NPs toxic to mussels ?

✓ The full range of ecotox endpoints has been determined for acute and chronic tests

 \checkmark Silver is toxic in the submicromolar range

2. What is the contribution of the nano scale?

- ✓ Our data suggest that actual (total) silver concentration is the leading toxicity driver
- ✓ The main contribution of the nano-scale is relative to the how silver is presented to the animal tissue (aggregation, sedimentation, etc).
- ✓ NanoSilver appears to be less reactive (less ROS activity) than Ag⁺ ions, but more readily available to the digestive tissue

- ✓ Ionic silver elicits response to oxidative stress (antioxidant enzymes)
- Complex dynamics characterize the response to the ionic and nano silver form with a partial overlap of the molecular signature in both analyzed tissues
- Microarray data indicate Ag+ had a more ready impact on intracellular targets such as mitochondria and ribosomes (protein translation)

4. Can AgENP toxicity be projected up to high order level?

- ✓ Long term bioenergetic measurements by means of DEB confirmed chronic ecotox endpoints
- ✓ AgNP LOEC for fecundity is around 1 μ g/L/(h)
- ✓ PEC/PNEC risk assessment would suggest a risk level of 0.01 (low risk)

Safe by Design and the Fiber Paradigm

Donaldson et al. Particle and Fibre Toxicology 7 (2010) 5 -22.

Nanogentools confidential

UNIVERSITÀ DEL PIEMONTE ORIENTALE

Compositional MWCNT library

of Carbon Nanotubes

	_		NTX1 Raw		NTX3 Raw			NTX4 Raw			r s
		% Purity	External diameter	Length	% Purity	External diameter	Length	% Purity	External diameter	Length	Numbe sample
	Raw material	97	15-35 nm	>10 µm	< 98.5	20-40 nm	>10 µm	<94	6-15 nm	>10 µm	m
	Cutting (tip sonication)	97	15-35 nm	3-5 μm 1-3 μm	< 98.5	20-40 nm	3-5 μm 1-3 μm	<94	6-15 nm	3-5 μm 1-3 μm	6
	Functionalization -COOH groups (HNO ₃ Protocol)	97	15-35 nm	< 1 µm	< 98.5	20-40 nm	< 1 μm ? % funct.	<94	6-15 nm	< 1 μm ? % funct.	m
	Purification	-						?	6-15 nm	? 1-3 μm Cutting < 1 μm))
4	sizes, 1 functio + NCT-7 (Mit	nalizat zui) +	tion der CB, max	nsities, (9 con	long a ditions	nd shor s for eac	rt asbe ch NTX	stos ?	5 - Su Z - po	rface m tential	nodifi
Nanothir					O.H.N.					Nanogen	tools co

Nanogentools confidential

UNIVERSITÀ DEL PIEMONTE ORIENTALE

Nanogentools confidential

68

UNIVERSITÀ DEL PIEMONTE ORIENTALE

Molecular systems approach

- Assess toxicity endpoints, short and long term
 - Survival, mitogenicity, epithelial-fibroblast transition, cell transformation
- Toxicogenomic approach, use classification algorithm
- Detailed Protein corona assessment by Triple-TOF based shotgun proteomics
- Derive a predictive model for asbestos induced lung cancer

Nanogentools confidential

Acknowledgments

Email: francesco.dondero@uniupo.it

Web http://GayaLabs.weebly.com
Thank you!

The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 691095.

This document and all information contained herein is the sole property of the NANOGENTOOLS Consortium or the company referred to in the slides. It may contain information subject to Intellectual Property Rights. No Intellectual Property Rights are granted by the delivery of this document or the disclosure of its content.

Reproduction or circulation of this document to any third party is prohibited without the written consent of the author(s).

The statements made herein do not necessarily have the consent or agreement of the NANOGENTOOLS consortium and represent the opinion and findings of the author(s).

The dissemination and confidentiality rules as defined in the Consortium agreement apply to this document.

Email: francesco.dondero@uniupo.it

